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Topological solitons in nondegenerate one-component chains
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The possibility of the existence of topological solitons in one-component chains with a nondegenerate
potential of gradient type is proven. The existence and stability of the solitons are ensured by the competing
nonlinear nearest-neighbor potentialV1 and parabolic second-nearest-neighbor potentialV2. Solitonic solutions
have been found analytically for piecewise-parabolicV1 and numerically for smoothened nearest-neighbor
~NN! potentialV1,d . Numerical results for the soliton velocity and front width are in good agreement with
analytical estimates. The solitons are shown to move at a unique velocity and actually maintain the constant
profile as long as the NN potential is smooth enough. The impact of two solitons of different sign is inelastic
and leads to their recombination. It is argued that the soliton propagation may constitute an elementary event
of structural transformations in the chain.
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I. INTRODUCTION

Topological solitons are well known in continuum mode
of ordered one-dimensional atomic chains with ons
bistable ~or multistable! degenerate potentials (f4, sine-
Gordon models!, when only homogeneous states with equ
energies can exist@1–5#. Meanwhile, in many systems ex
hibiting structural transformations up to the appearance
random~glasslike! atomic configurations anharmonic pote
tials are of gradient type and have energetically nondege
ate equilibrium states@6–8#.

Until recently it seemed that topological solitons in su
situations were forbidden. The reason is that~i! contrary to
the onsite potential, the multistable nature of gradient-ty
potentials is lost in continuum approximation, and~ii ! non-
degeneracy of the potential wells leads to the releasing
absorption of the energy during the transition from one w
to another, which results in a contradiction with the conditi
of stationary propagation of topological solitons.

It turned out, however, that in multistable two-compone
~molecular! chains both of these difficulties might be ove
come@6,7#. Namely, due to the presence of an optical bran
of the IR spectrum, the gradient potential may be tra
formed under certain conditions to an onsite potential. If t
takes place, topological solitons of a special type may e
in spite of nondegeneracy of the multistable potential. Th
solitons transfer the initial state into an intermediate o
which is in the attraction region of the final state, and may
responsible for structural transitions or chemical reaction
solids @7#.

*Author to whom correspondence should be addressed. Emai
dress: lmanev@center.chph.ras.ru
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However, a question arises as to whether this is poss
in one-component~atomic! chains. For a rather special cas
of a chain of particles with competing piecewise parabo
nearest-neighbor and harmonic next-nearest-neighbor po
tials ~Reichert-Schilling model@9,10#!, a positive answer was
obtained in Ref.@8#. Unfortunately, topological solitons in
such a case turned out to be unstable.

In the present paper, the existence and stability of to
logical solitons in a nondegenerate one-component sys
with more realistic anharmonic potentials of gradient typ
which may be obtained by smoothening a piecewise po
tial, are examined. The paper is organized as follows. In S
II, we outline the Reichert-Schilling model~RSM! and study
the static features of background and solitonlike configu
tions. Section III is devoted to approximate analytical inve
tigation of the dynamics of the RSM. In Sec. IV, we propo
a numerical approach to the calculation of solitonic solutio
for smooth potentials. A description of a transition betwe
alternating and intermediate homogeneous states is give
Sec. V. Finally, in Sec. VI a molecular dynamics study of t
existence and stability of topological solitons is presente

II. STATIC REICHERT-SCHILLING MODEL

A. General theory

The RSM, first introduced in Ref.@9#, is an infinite chain
of identical classical particles withanharmonicandcompet-
ing pair interactions along the chain up to the second nei
bor leading to the following expression for the system’s e
ergy:

E5(
n

V1~un112un!1V2~un122un!

5(
n

V1~wn!1V2~wn1wn11!, ~1!

d-

r-
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MANEVITCH, SIGALOV, AND SAVIN PHYSICAL REVIEW E 65 036618
where un are the particle positions andwn5un112un the
bond lengths. Below we give a sketch of the principal resu
by Schilling et al. @9–11# in a slightly different yet equiva-
lent notation@12#.

The piecewise-parabolic nearest-neighbor~NN! potential
is composed of two parabolas of the same curvatureC1.0,

V1~x!5
1

2
C1$@x2a12a2s~x!#22@c2a12a2s~x!#2%,

~2!

a65
1

2
~a26a1!, s~x!5sgn~x2c!P$21,11%,

wherea1 and a2 are positions of minima of the parabola
andc is the point where they are patched together@see Fig.
1~a!, curve 1, and Fig. 1~b!, curve 1#. The next-nearest
neighbor~NNN! interaction potential is harmonic,

V2~x!5
1

2
C2~x2b!2, C2Þ0.

The stationary equations

]E

]wn
50, n50,61,62, . . . ~3!

have been solved to yield a class of solutions:

FIG. 1. The appearance of the NN interaction potentialV1,d(x):
a51, a151, a253; d50, 0.2, 0.4~curves 1, 2, 3! for ~a! c52
and ~b! c53.5.
03661
s

wn5r 01y(
i

h u i us~wn1 i !, ~4!

where

h52
112a2A114a

2a
, a5C2 /C1 , ~5!

r 05
~11h!2a122hb

~12h!2
, y5a2

11h

12h
. ~6!

Sincewn appears on both sides of Eq.~4!, this is in fact a
self-consistency equation for the stationary configuratio
$wn%. Its solution may be found as follows: Replace$s(wn)%
on the right-hand side~rhs! by a sequenceS5$sn% of Ising-
like variablessn561 and calculate the correspondingwn .
If for every k the self-consistency is satisfied, i.e., for eve
wk calculated according to

wn5r 01ySn , Sn5(
i

h u i usn1 i , ~7!

we haves(wk)[sgn(wk2c)5sk , then this particular se-
quenceW5$wn% is a solution to Eq.~4!. Thus, every solu-
tion $wn% of the stationary equation~3! is in one-to-one cor-
respondence with a binary Isinglike sequence$sn%.

Moreover, it was proven in Ref.@10# that if a2.0, wn
.0 for all n, and the geometric parameters of the potenti
(a1 ,a2 ,b,c,h) lie in the range determined by inequality

u~12h!2c12hb2~11h!2a1u,~11uhu!~123uhu!a2 ,
~8!

theneachsequence$sn% gives a correct self-consistent solu
tion $wn% of Eq. ~3!. Every such solution is related to
~locally! stable equilibrium configuration of the chain ifC1
.0. At C1,0 all the equilibrium configurations are un
stable, and atC150 the system splits into two independe
harmonic sublattices.

Not only bond lengths but also the energy of the system
any equilibrium configuration may be expressed throu
Isinglike variables:

E~S![E„W~S!…

5E0(
n

12h(
n

sn2 (
n,m

nÞm

J~n2m!snsm , ~9!

where

E052
C1

2 H 11h

12h
a2

2 1
h

~12h!2
b22

4h

~12h!2
ba11c2

22ca11S 11h

12h D 2

a1
2 J , ~10!
8-2
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h5C1a2

~11h!2a12~12h!2c22hb

~12h!2
,

J~k!5J0h uku, J052
C1a2

2

2

11h

12h
. ~11!

All the stationary configurations were found to be metasta
for C1.0 anduhu,1 ~what is assumed below!, and unstable
for C1,0.

Schilling et al. were interested primarily in the statistic
properties of stationary chaotic configurations of the cha
They studied as well the chaotic chain motions, relaxat
after quench, and dependence of the residual values of
modynamic functions on the quench rate@13–17#. These
properties are determined mostly by the kinetics of succ
sive localized transformations of the chain. In contrast,
are going to study the solitonic~cooperative! motions in the
RSM and RSM-like systems with smooth potential. This c
only be done by approximate analytical or numerical te
niques. Fortunately, certain limit cases of approximate so
tions may be compared to exact results for the static R
found on the basis of the general theory given above. For
purpose it is necessary to calculate the background and
tonlike static states of the system, which is the aim of the
of this section.

B. Background states

Before we proceed, it is worth listing some useful iden
ties that follow from Eq.~5!:

h52
~A114a21!2

4a
,

11h

12h
5

1

A114a
,

h

~12h!2
52

a

114a
,

h

12h2
52

a

A114a
. ~12!

With their help, Eqs.~6! and ~11! may be rewritten as

r 05
a112ab

114a
, y5

a2

A114a
, ~13!

h5C1a2~r 02c!, J05
C1a2

2

2A114a
. ~14!

To find the background state we are only interested in
energy differences rather than their absolute values, so
we may omit the first sum in Eq.~9! to obtain

E8~S!52(
n

snFh1J0(
i 51

`

h i~sn1 i1sn2 i !G . ~15!

Below we drop the prime onE. It is obvious that, depending
on the signs ofh and h, E(S) can reach its minimum in
either of the following cases:~i! sn511 for all n ~such a
configuration will be denoted below byS5$11%),
03661
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E52(
n

Fh12J0(
i 51

`

h i G5(
n

Est
$11% , ~16!

whereEst is the per site energy of a static configuration,

Est
$11%52h22J0

h

12h
; ~17!

~ii ! sn521 for all n ~configuration$22%),

Est
$22%5h22J0

h

12h
; ~18!

~iii ! s2k511, s2k11521 ~configuration$12% or equiva-
lent configuration$21%, which is obtained by enumeratio
shift!; the second sum on the rhs of Eq.~9! vanishes, so tha

Est
$12%5Est

$21%522J0(
i 51

`

~2h! i52J0

h

11h
. ~19!

To compare the energies of these states we subtract Eq.~19!
from Eqs. ~17! and ~18! and transform the result with th
help of Eqs.~12! and ~14! to obtain

Est
$11%2Est

$12%52h24J0

h

12h2
54e0a~11c!,

where

e05
C1a2

2

2~114a!
5

J0

A114a
, c52

114a

2aa2
~r 02c!.

~20!

Similar derivations lead to

Est
$22%2Est

$12%54e0a~12c!.

One can easily see that$12% is the ground state ifa
.0, ucu,1. If these conditions are not simultaneously s
isfied, then either$11% (h.0, i.e., ac,0) or $22%
(ac.0) is the ground state of the system.

It is of fundamental importance that the ground state w
alternating bond lengths arises in the system with no ext
sic difference between these bonds. This is due to the ef
tive long-range interaction along the chain: although the
plicit pair interaction extends only to the second neighbor
the given particle, it may be seen from Eqs.~4! and ~9! that
every particle ‘‘feels’’ the influence of all other particles i
the chain, the effective radius of interaction being invers
proportional to (2 lnuhu). Such a feature suggests consideri
the states$12% and $21% as homogeneous states wi
double period, oralternating uniform states~AUS’s!. In con-
trast, configurations$11% and$22% will be referred to as
simple uniform states~SUS’s!. This approach will enable us
to reveal cooperative processes inatomiccrystals.

We will denote by$s1s2% such states thats(w2k)5s1 ,
s(w2k11)5s2 for all k. The intermolecular distancesw2k

for uniform states will be denoted byr s
1 for $11%, r s

2 for
8-3
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$22%, r a
1 for $12%, and r a

2 for $21%. In particular, we
obtain forS5$11% with the aid of Eq.~7!,

Sn52112(
i 50

`

h i5
11h

12h
5

1

A114a
; ~21!

therefore

r s
15r 01a2 /~114a!. ~22!

By analogy, we find that

r s
25r 02a2 /~114a!, r a

65r 06a2 . ~23!

Equations~22! and ~23! may be generalized as follows:

r ~$s1s2%!5r 01a2@s112a~s12s2!#/~114a!,
~24!

wheres i561. It is easy to see thatw2k115w2k for SUS’s,
while w2k1152r 02w2k for AUS’s.

Thus, in the RSM under certain conditions every bo
may either be ‘‘compressed’’@s(wj )[sgn(wj2c)521# or
‘‘stretched’’ @s(wj )511#. The ground-state configuration
chosen by the model parameters among uniformly co
pressed ($22%), uniformly stretched ($11%), and alternat-
ing ($12% or $21%) configurations. The RSM in alterna
ing configurations may be considered as a uniform chain
diatomic molecules with constant intramolecular,w2k , and
intermolecular,w2k11, distances.

C. Solitonlike states

Among the whole variety of nonuniform states$sn% we
now choose for further study the simplest block-copolym
like states, i.e., states of which each semi-infinite part of
chain, $snun,0% and $snun>0%, is in one of the homoge
nious states described above. We will denote byS
5$s1s2us3s4% such states in which

s2k5H s1 , n,0,

s3 , n>0;
s2k115H s2 , n,0,

s4 , n>0;
~25!

we assume that$s1s2%[” $s3s4%. Substitution of Eq.~25!
into Eq. ~7! for different configurations yields the following
results forn>0: for ~a! $22u11%, ~b! $12u11%, and~c!
$21u12%, respectively,

Sn5
11h

12h
2

2hn11

12h
, S2n52Sn21 , ~26a!

Sn5
11h

12h
2

2hn11

12h2
, S2n5~21!n

12h

11h
1

2hn11

12h2
,

~26b!

Sn5~21!n
12h

11h
1

2hn11

11h
, S2n5Sn21 . ~26c!

All other configurations of this kind may be reduced to tho
listed above by the following transformations:~i! changing
03661
d

-

f

-
e

e

all sn→2sn, which leads to the change of sign in allSn ;
~ii ! turning the chain around the ‘‘block boundary,’’n→
2(n11); ~iii ! shifting the enumeration by 1,n→n61.

Particle positions may be found as follows:

un5un211wn215•••5u01 (
k50

n21

wk

5u01nr01y(
k50

n21

Sk , n.0, ~27!

un5un112wn5•••5u02 (
k5n

21

wk5u01nr02y(
k5n

21

Sk ,

n,0. ~28!

Let us consider the RSM as a ‘‘molecular’’ chain consisti
of diatomic ‘‘molecules’’@s2ks2k11# and introduce molecu-
lar variables, mass center coordinatexk , and deformationfk
according to

xk5~u2k111u2k!/2, fk5~u2k112u2k!/25w2k/2.
~29!

With the help of Eqs.~26!, ~27!, and ~28! we find for S
5$22u11%,

un5u01nS r 01sgn~n!
a2

114a D22a2

h~11h!~12h unu!

~12h!3
,

xk5u01S 2k1
1

2D S r 01sgn~k!
a2

114a D
2a2

h~11h!~22h u2ku2h u2k11u!

~12h!3
, ~30!

fk5
1

2 S r 01sgn~k!
a2

114a D
2a2sgn~k!

11h

~12h!2
h u2k11/2u11/2, ~31!

for any n, k. Note an identity

h u2ku6h u2k11u[2uhu u2k11/2ug~6h,k!,

g~h,k!5H cosh~ 1
2 ln h!, h.0,

2sgn~k!sinh~ 1
2 lnuhu!, h,0,

which is valid for anyk andhÞ0. The appearance of Eqs
~30! and ~31! suggests denotingl k52k1 1

2 . Using the iden-
tity sgn(l k)[sgn(k), we obtain the following.

~a! For S5$22u11%:

xk5u01 l kr
(a)~ l k!22a2

h~11h!@12uhu u l kug~h,l k!#

~12h!3
,

8-4
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fk5
1

2
r (a)~ l k!2a2sgn~ l k!

~11h!h u l ku11/2

~12h!2
,

wherer( l k)5w2k for the infinite uniform chain of configu-
ration @s2ks2k11#: r (a)( l k)5@r 01sgn(l k)a2(114a)21#
5r s

6 , depending on the sign ofl k .
~b! For S5$12u11%:

un5u01nrs
122a2

h~12hn!

~12h!3
, n>0,

un5u01nr01a2zn22a2

h2~12h unu!

~12h!3
, n,0,

xk5u01 l kr s
122a2

h@12uhu u l kug~h,l k!#

~12h!3
, k>0,

xk5u01 l kr 01
1

2
a222a2

h2@12uhu u l kug~h,l k!#

~12h!3
, k,0,

fk5
1

2
r (b)~ l k!2sgn~k!a2

h u2ku11

~12h!2
,

where zn5@12(21)n#/2; r (b)( l k)5r s
1 for l k.0 and r a

1

for l k,0.
~c! For S5$21u12%:

un5u01nr01sgn~n!2a2F zn12
h~12h unu!

~12h!2 G ,

xk5u01 l kr 01sgn~ l k!2a2F1

2
12

h@12uhu u l kug~h,l k!#

~12h!2 G ,

fk5
1

2
r (c)~k!1sgn~ l k!2a2

huhu u l kug~2h,l k!

~12h!2
,

wherer (c)( l k)5r a
6 , the sign in the superscript being that

l k .
It is easy to see that the profiles ofxk , fk have the soli-

tonlike shape. In the next section we show that this simila
is not occasional, and that excitations of such a shape
behave as solitons can exist in the system.

D. Conditions of the existence and stability of static
configurations of the chain

As was shown earlier@9,10#, everylocal minimum of the
system’s potential energy~1! corresponds to a particular sta
$sn% of the Ising model defined according to Eqs.~9!–~11!.
Meanwhile, the opposite isnot alwaystrue. A sequence$sn%
corresponds to a local minimum of the system’s poten
energy, with interparticle distances$wn% given by Eq.~4! if
only C1.0 and

wn.c for everyn such thatsn511, ~32!
03661
y
at

l

0,wn,c for everyn such thatsn521.

SequencesS5$sn% obeying ~not obeying! condition ~32!
will be referred to asallowed ~forbidden! sequences. Let us
find the conditions under which the configurations cons
ered above are allowed.

It was shown in Ref.@10# that all possible configuration
S are allowed ifa1,a2, i.e., a2.0, inequality ~8! holds,
and allwn.0. Let us divide both sides of Eq.~8! by a2(1
2h)2 and expressh througha in the left-hand side~lhs! of
Eq. ~8! with the help of Eq.~12!. We easily obtain

uc̃2 r̃ 0u,
~11uhu!~123uhu!

~12h!2
, ~33!

where

r̃ 05
ã12ab̃

114a
5

r 0

a2
, ã5

a1

a2
, b̃5

b

a2
, c̃5

c

a2
.

~34!

Parametera2 plays here the role of a scale factor. It can
seen that the system’s geometry may be exhaustively c
acterized~apart from the scale! by four dimensionless param
eters$ã,c̃, r̃ 0 ,a%.

Let us expand the modulus in the rhs of Eq.~33! and
convert againh to a. Note also that, according to Eq.~12!,
h.0 impliesa,0, and vice versa. Moreover, the rhs of E
~33! must be positive in order for this inequality to hold
With this in mind, we find thatall the configurations of the
RSM are allowed if

uc̃2 r̃ 0u,2b2b2, 1,b,2,
~35!

uc̃2 r̃ 0u,2b21, 1/2,b,1,

whereb51/A114a. This result has a clear physical sens
The characteristic period of the chainr 0 has to be close
enough toc, the location of the cusp inV1, in order to enable
two equilibrium lengths for every bond, one smaller and o
greater thanc. Otherwise only one of the branches of pote
tial V1 works, and this potential becomes effectively ha
monic. In this case the solution of the equilibrium equati
~3! is unique.

The condition that allwn must be positive is to be satis
fied simultaneously with Eq.~35!. It is easy to see from Eq
~7! that

~wn!min5r 02y
11uhu
12uhu

,

from which we obtain, with help of Eqs.~12!, ~13!, and~34!,

r̃ 0.1, b,1~a.0!, ~36!

r̃ 0.b2, b.1~a,0!.

While all the states are allowed within the range of p
rameters given by the overlap of Eqs.~35! and~36!, specific
8-5
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TABLE I. ParametersQi from Eq.~37! for the simplest uniform and solitonlike configurations of th
chain.

S b q12 r̃ 0 q22 r̃ 0 q32 r̃ 0

$11% any b b2

$22% any b 2b2 2b2

$12% any b 21 21 1
$22u11% b.1 2b2 2b b

b,1 2b 2
b~3b21!

b11

b~3b21!

b11

$12u11% b.1 21 1
2~b21!221 1

b,1 21 1
2~b21!221 1

2~b11!221

$21u12% b.1 21
~b21!2

b11
21 1

b,1 21
~b21!2

b11
21 b
. I
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configurations may exist in a wider range of parameters
order to find this range for a particular configurationS, we
have to estimate three values,

Q1~S!5a2
21min

S

wn for suchn that sn521,

Q2~S!5a2
21max

S

wn for suchn that sn521, ~37!

Q3~S!5a2
21min

S

wn for suchn that sn511,

and to find conditions under which 0,Q1 , Q2, c̃,Q3.
Note thatQ1<Q2 by definition ~37!. ParametersQi for the
configurationsS considered above may be calculated us
Eqs.~7!, ~21!, and~26!. They are summarized in Table I.

III. ANALYTICAL DESCRIPTION OF SOLITONIC
TRANSFORMATIONS OF THE RSM

While the static RSM can be solved exactly and anal
cally, the dynamic version of the model does not allow
exhaustive analytical treatment. The dynamic properties
the RSM and its modifications have been investigated w
the help of numerical and analytical methods@13–17#.

On the basis of this research, Schillinget al. argued that,
for low enough temperatures and smalluhu, the dynamics is
reduced to the vibrations in the vicinity of particular loc
minima and transitions between them. Moreover, the ov
whelming kind of process $s j%→$s j8%, where s j

5s„wj (t)…, s j85s„wj (t1Dt)…, has been found to be singl
spin flips, i.e., transitions~sudden changes ofwj ) that s j8
52s j , but sk85sk for all j Þk. Hence, under these cond
tions the localized processes play the predominant role
RSM dynamics.

However, at a quench from high to low temperature
system generally cannot reach its ground state. Since
potential landscape is very complex and every two neighb
ing local minima are separated by a barrier, the global m
03661
n
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mum ~the ground state! of the infinite system cannot b
reached within finite time. As a result of relaxation, the sy
tem becomes frozen in a metastable state, the excessive
energy of which is determined by the quench rate. Analy
of the relaxation process shows that, at finite times, locali
transformations may only lead to formation of a bloc
copolymer-like state, which is still metastable. Further tra
formation into a uniform ground state may be only broug
about by movement and annihilation of block boundaries
topological defects. Therefore, it may be argued that sol
nic transformations are dominating at late stages of
quench of initially disordered systems.

Moreover, whileuhu increases from 1/3 to 1, which cor
responds toa→21/4 or a→1`, the correlation length in
the allowed states increases infinitely. Therefore, m
single-spin flips would lead from allowed to forbidden state
In this case the cooperative dynamic processes may pl
major role and influence significantly the kinetic and therm
properties of a RSM-like system.

A. Exact discrete equations of motion

The system’s Hamiltonian is obtained from Eq.~1! by
addition of the kinetic energy term,

H5
1

2 (
n

@mu̇n
21V1~un112un!1V2~un122un!#.

In terms of the molecular variablesxk , fk introduced in Eq.
~29! the Hamiltonian takes the form

H5(
k

@m~ ẋk
21ḟk

2!1V1~2fk!1V1~xk2fk2xk21

2fk21!1V2~xk2fk2xk211fk21!1V2~xk1fk

2xk212fk21!#.

Let us rewrite Eq.~2! for the NN potential to separate th
parabolic part and the piecewise-linear termU(x) that brings
about the nonlinearity of the system,
8-6
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V1~x!5
1

2
C1@~x2a1!22~c2a1!2#1C1U~x!,

U~x!522a2~x2c!u~x2c!,

where u(x)5@sgn(x)11#/2 is the step function. Then th
equations of motion are as follows:

2m
d2xk

dt2
2~C112C2!~xk1122xk1xk21!1C1~fk11

2fk21!2C1U8~dk11!1C1U8~dk!50, ~38!

2m
d2fk

dt2
2C1~xk112xk21!18C1fk1~C122C2!~fk11

22fk1fk21!2C1U8~dk11!2C1U8~dk!

12C1U8~2fk!50, ~39!

where dk5(xk2fk2xk212fk21)5w2k21 are distances
between neighboring ‘‘atoms’’ of different ‘‘molecules.’’

In general, both series of equations~38! and~39! are non-
linear since U(x) has a cusp at pointx5c. However,
U8(dk)522a2u(dk2c)5const for a special class of solu
tions. Consider a process where all the intermolecular bo
both before and after the transformation, are either co
pressed (dk,c) or stretched (dk.c). Then U8(dk11)
2U8(dk)[0, and Eq.~38! becomes linear.

Let us suppose, moreover, that all the intramolecu
bonds have the same ‘‘sign’’ before the transformation~at t
→2` for every fixedk) and change it to the opposite sig
after transformation~at t→1` for given k). Then Eq.~39!
becomes linear in each of these limits. Thus, we restrict
consideration by one particular~but very important! class of
process,S→S8, where S5$s1s2%, S85$s18s2%, where
s1852s1.

B. Continualized equations of motion

Since discrete equations~38! and ~39!, even upon the
above simplification, are still intractable, let us continual
them. We will look for smooth running-wave-type solution
One of the configurationsS andS8 is always an AUS. In the
AUS the distance between the centers of neighboring m
eculesxk112xk5r a

11r a
252r 0, therefore, it seems natura

to introduce the wave variablej according to

xk~ t ![x~j!, fk~ t ![f~j!, j52kr02vt,

wherev is the wave velocity. As shown above, Eqs.~38! and
~39! are linear in the limitj→6`. We take account of the
fact that U8(2f)52a2„sgn(f2c/2)11…, U8(dk)[
2a2(s211). After developing the finite differences in Eq
~38! and ~39! into series overr 0 as a small parameter, w
obtain in the leading orders:
03661
s,
-

r

e

l-

4s2r 0
2x924~112a!S r 0

2x91
1

3
r 0

4x (IV)1
2

45
r 0

6x (VI)1••• D
14S r 0f81

2

3
r 0

3f-1
2

15
r 0

5f (V)1••• D50, ~40!

4s2r 0
2f924S r 0x81

2

3
r 0

3x-1
2

15
r 0

5x (V)1••• D14~122a!

3S r 0
2f91

1

3
r 0

4f (IV)1••• D18f12a2

3@s22sgn~f2c/2!#50, ~41!

where s5(v/r 0)Am/2C1 is the dimensionless velocity an
the prime denotesd/dj. Let us note that in generalf
5O(1), x85O(1). Since Eq.~40! is linear, we can repre-
sentx in the form of a series,

x85G1g0f1(
i 51

`

gif
( i ). ~42!

Finding the constantsG andgi will solve our problem. Let
us substitute Eq.~42! into Eq.~40! and note that atf[” 0 the
coefficients at every derivative off must vanish indepen
dently. Thus, the coefficient atf8 is equal to

4r 0
2g0@s22~112a!#14r 050;

therefore,g05(r 0p)21, wherep5112a2s2. By analogy,
we obtain

g15g35g55•••50, g25
r 0

3p2
~2p2p0!,

g45
r 0

3

45p3
~6p2212p0p15p0

2!, . . . , ~43!

where we denotedp05112a. Below we cut the series ex
pansion~42! on the fourth term. Let us substitute Eq.~42!
with coefficients from Eq.~43! ~only G is still unknown! into
Eq. ~41!. This yields

B0f1B2f91B4f (IV)1•••

5r 0G1
1

2
a2@sgn~f2c/2!2s2#, ~44!

B0522p21, B252
r 0

2

p S ~p21!21
p2p0

3p D ,

B452
r 0

4

3p H ~p21!21~p2p0!F2p1
17p25p0

15p2 G J .

~45!

To establish the boundary conditions let us note that the c
figuration of the part of the chain not yet affected by t
8-7
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MANEVITCH, SIGALOV, AND SAVIN PHYSICAL REVIEW E 65 036618
transformation (j→1`) is merely a certain static configu
ration,S5$s1s2%. Taking into account Eqs.~20!, ~24!, and
~29!, we find that

fuj→1`5
1

2
r ~$s1s2%!

5
1

2 H c1
a2

114a
@s112a~s12s22c!#J ,

f8uj→1`5f9uj→1`5•••50. ~46!

Moreover,f must be bounded forj→2`.
Equation ~44! with boundary conditions~46! has been

solved in the Appendix. The correspondence between p
lems ~44!,~46! and ~A5!,~A6! is as follows:

y5f2
c

2
,

y05
r ~$s1s2%!2c

2
5

a2@s112a~s12s22c!#

2~114a!
, ~47!

A152
a2

2
, A252r 0G1

B0c1a2s2

2
. ~48!

Note that sgn(y0)5s1. Then the necessary condition of e
istence of a solution for the problem involved is given by E
~A8!,

y05@r 0G1a2~s12s2!/2#/B02c/2. ~49!

Comparison of Eqs.~48! and ~49! yields

A252B0y01s1a2/2.

C. Sound velocity

The sound velocity is determined by periodic solutions
Eq. ~44! that have infinitely small spatial frequencyV
5 il1, wherel1 is given by Eq.~A2! or, in the limit uq2u
!1, by Eq.~A4!. In the latter case, upon substitution of th
values of coefficientsBi from Eq. ~45!, the conditionV50
reads asB0 /B250. SinceB050 for p51/2, we only have to
ensure thatB2Þ0 and uq2u!1 for p51/2. If p5112a
2s251/2, thenp2p052s252(114a)/2 and

B252r 0
2S 114a

3
2

1

4D5
r 0

2

6
~1116a!50,

if only a521/16, which is outside the range allowed fora.
Furthermore, forp51/2,

B452
2r 0

4

3 H 1

4
2

114a

2 F2
1

2
1

4

15S 62
5

2
~114a! D G J

52
4r 0

4

45
~7133a180a2!,0.
03661
b-
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As shown in the Appendix, two kinds of solutions ma
exist, the first one corresponding to a topological solit
~kink!. An additional condition of its existence is given b
Eq. ~A37!, which allows one to findG using Eq.~48!:

G5
B0c1a2s2

2r 0
5

~22p21!c̃1s2

2r̃ 0

.

Now y052s1A1 /B0. Let us substitutey0 from Eq.~47!, A1
from Eq. ~48!, andB0 from Eq. ~44!, then

s1a2

2~22p21!
5

a2@s112a~s12s22c!#

2~114a!
.

Let us remember thatp5112a2s2. After simple transfor-
mations we obtain the unique value of the kink velocity,

p5
1

2 S 11
114a

11e D , sK5F ~114a!e

11e G1/2

, ~50!

where

e524as1~s21c!. ~51!

Sincea.21/4, kink propagation is only possible ife>0. In
particular,e50 corresponds to the stationary kink.

It is easy to see from Eq.~44! that the velocity spectrum
of nontopological solitons~NTSs! is bounded from below by
the kink velocitysK while the upper limit for the NTS ve-
locity, smax, is given by conditionsB0.0, B2,0 @see Eq.
~45!#. Therefore, 0,sK,sNTS,smax, where

smax
2 5H 1, 2 1

4 ,a,2 1
16 ,

116a2A3 1118a
3
2 ~114a!

, a>2 1
16 .

Note thatsmax.uau2A6 for for uau!1 .

D. Kink energy and profile

The kink profile is given by Eq.~A38! taking into account
Eq. ~47!,

f~j!5
c

2
1sgn~j!

r 2c

2
@L1~12e2l1uju!1L2~12e2l2uju!#,

~52!

wherer 5r ($s1s2%) is given by Eq.~24! and parametersl i ,
L i may be calculated with the help of Eqs.~A2!, ~A19!,
~A20!, ~45! and ~50!. It is easy to see without calculatio
that, while f(1`)5r /2, in the opposite limitf(2`)5c
2r /2.

A running soliton transfers the chain from an initial equ
librium state to a dynamic intermediate one. The interme
8-8
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TOPOLOGICAL SOLITONS IN NONDEGENERATE ONE- . . . PHYSICAL REVIEW E 65 036618
ate state then relaxes to the a new equilibrium one.
former differs from the latter by the fact that all particle
have nonzero velocities.

The energy of the final static configurationEf , the initial
static configurationEi , and the intermediate dynamic con
figuration Ed can be found by substitution of interatom
distances calculated according to Eq.~52! into Eq.~15!. This
yieldsEf2Ei5e0e2 for static states, wheree is given by Eq.
~51!. This means that, if the kink is possible~i.e.,e.0), then
its propagation is an endothermic process becausee0.0.
The kinetic energy of particles in the intermediate dynam
state turns out to be exactly equal to the relative poten
energy (Ed2Ei). Thus, the Lagrangians of the initial an
intermediate states coincide. Therefore, in this case the
grangian is conserved upon transformation and thus plays
role of ‘‘effective energy.’’

While continualizing the discrete equations of moti
~38! and~39! we have neglectedf- and higher-order deriva
tives. It is only justified iff changes slightly on the scale o
several lattice constants. In other words, the continu
theory is valid if the widthj0 of the soliton front is much
larger thanr 0. Kink front width may be found from Eq.~45!,

j05A2B2 /B0

5r 0~2p21!21/2F ~p21!21
1

3 S 12
112a

p D G1/2

.

In particular, for a stationary kink (sK50),

j05r 0

2uau

A114a
. ~53!

This result is to be compared to the front widthjRS given by
exact discrete Reichert-Schilling theory. The latter yields,
suggested by Eqs.~4! and ~5!,

jRS5r 0u lnuhuu215r 0U lnU2122a1A114a

2a
UU21

.

~54!

To compare Eqs.~53! and ~54! let us consider two asymp
totic cases.

~a! m1[(114a)→0:

j0. 1
2 r 0m1

21/2~12m1!, jRS.
1
2 r 0m1

21/2~11m1!;

~b! m2[a21→0:

j0. 1
2 r 0m2

21/2~12 1
8 m2!, jRS.

1
2 r 0m2

21/2~11 3
8 m2!.

Thus, the prediction of the approximate continuous the
coincides in the leading order with the exact result for
static case. This encourages application of the above con
alization approach to the investigation of the dynam
Reichert-Schilling model and structural transformations
more general nondegenerate systems.
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IV. SOLITONIC TRANSFORMATIONS IN A
SMOOTH-POTENTIAL RSM-LIKE MODEL:

NUMERICAL APPROACH

As shown in the previous section, topological solito
may exist in the RSM under certain conditions. These s
tons, however, turn out to be unstable due to the presenc
a cusp in the NN potential. Our idea is to consider mo
realistic RSM-type models using a smoothening procedu

The potentials of interaction in real molecular and atom
chains are smooth functions of displacement. Besides, n
smoothness leads to instability of the numerical procedu
of integration. Therefore, let us start by smoothening the
potential. Consider the potential given by the following e
pression:

V1,d~x!5
1

2
C1~x2a1!21Ud~x!, ~55!

where the functionUd(x) is the smooth version ofU0(x),

Ud~x!5
1

2
k~x2c!2Ad21

1

4
k2~x2c!2, k522C1a2 ,

~56!

d is the smoothening parameter, and only the positive va
of the square root is considered. AtdÞ0, the functions~55!
and~56! depend smoothly onu. At x→`, the potential~55!
tends asymptotically toV1(x), and at d→0 the function
V1,d(x) tends uniformly toV1(x).

The piecewise-parabolic potential is a two-well potent
at a1,c,a2 and one-well atc<a1 or a2<c. At c5(a1
1a2)/2, function ~56! becomes a symmetrical two-well po
tential; therefore, the smoothened potential~55! has a sym-
metrical two-well shape@Fig. 1~a!#. Characteristic profiles of
the interaction potentials atc.a2 are drawn in Fig. 1~b!.

A. Uniform stationary states

To find the interparticle distances for a stationary unifo
state of the chain with smoothened NN potentialV1,d one
should minimize numerically the corresponding energy:

Est,d5V1,d~x!1V2~2x!→minx, ~57!

for the simple uniform states and

Est,d5
1

2
@V1,d~x1!1V1,d~x2!#1V2~x11x2!→minx1 ,x2

,

~58!

for alternating uniform states. These problems were sol
by the method of steepest descent. Equation~57! has two
solutions,r s,d

6 , while Eq. ~58! has one solution, (r a,d
2 ,r a,d

1 ).
Substitution of these solutions into expressions~57! and~58!
yields the energies of the stationary statesEst,d

$22% , Est,d
$11% , and

Est,d
$12%[Est,d

$21% . The uniform states$22%, $21%, and
$12% of the chain are schematically represented by Fig

A natural analogy of the system in question and a polym
chain appears. The system in the alternating uniform s
may be considered as a chain of repeating segments~mono-
8-9
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mers!, each of them consisting of two bonds of differe
length, one compressed (2) and one stretched (1). Since
the transition (2)↔(1) is reversible, such states may b
considered as different conformational states, e.g.,cis and
trans. Uniform state$22% is the intermediate point of a
transition between them.

To describe the ‘‘conformational’’ transformation$21%
→$12%, new coordinates can be introduced:

r 5u1 , w5u11u22 l , where l 5r a,d
1 1r a,d

2 ~59!

is the monomer length for the system in the alternating
tionary state. Herer describes the ‘‘conformational’’ state o
the monomer, andw is the change of the ‘‘molecular chain
step. Potential surface of the conformational transition
given by the following expression:

E~r ,w!5
1

2
@V1,d~r !1V1,d~ l 1w2r !#1V2~ l 1w!.

Consider, for example, two sets of chain parameters,

a151, a253, c52, b54.5, a51, d50.4, ~60!

a151, a253, c53.5, b56.5, a51, d50.4, ~61!

with C151, C25a. For the set~60! the NN potential is a
symmetrical double-well potential@see Fig. 1~a!#. At any
value of the parametera.0 the ground state is$21%. The
dependence of the valuesr s,d

2 , r a,d
6 , Est,d

$22% , andEst,d
$21% on a

is demonstrated in Table II.

FIG. 2. Schematic representation of~a! the uniform stationary
state of the chain$22% (x5r s,d

2 ), ~b! the alternating uniform state
$21%, and~c! $12% (x15r a,d

2 , x25r a,d
1 ).
03661
-

s

For the set of values~61! the NN interaction potential is
the single-well type@see Fig. 1~b!#. The ground state is
$22% for a,a0'1.8668, or$21% for a.a0. Let us con-
sider the potential surface of the structural transitionE(r ,w)
~Fig. 3!. At a,a0 the conformational transition$21%→
$12% is impossible because the state$22%, which is the
intermediate point of the transition, has lower energy th
the final state$12% @see Fig. 3~a!#. Therefore, the system
would be ‘‘caught’’ in the state$22%. At a>a0 this cannot
take place because now the state$22% has higher energy
than$21% and$12% @see Fig. 3~b!#. In this case the exis-

FIG. 3. Potential surfaceE(r ,w) of the conformational transfor-
mation $21%→$12% for ~a! a151, a253, b56.5, a51.7, a
51, d5 0.4 @point 1 corresponds to the state$21% (r 52.2409,
w50, E$21%52.1811), point 2 is for $22% (r 52.9888,
w520.1713,E$22%52.0717)]; and for ~b! a151, a253, b
56.5, a53, a51, d50.4 @point 1 corresponds to the stat
$21% (r 52.2765,w50, E$21%52.1297), point 2 is for$22%
(r 53.0994,w520.0967,E$22%52.1743)#.
TABLE II. Dependence of the valuesr s,d
2 , r a,d

6 , Est,d
$22% , andEst,d

$21% on a for model parameters~60!.

a r s,d
2 r a,d

2 r a,d
1 Est,d

$22% Est,d
$21%

0.1 1.3571 1.1660 2.9956 0.0970 20.0715
1.0 2.0000 1.3033 3.1114 0.0487 20.0585
2.0 2.1111 1.3255 3.1281 0.0544 20.0565
5.0 2.1905 1.3410 3.1394 0.0575 20.0551

10.0 2.2195 1.3466 3.1434 0.0586 20.0547
25.0 2.2376 1.3501 3.1459 0.0592 20.0544
50.0 2.2438 1.3513 3.1467 0.0594 20.0543
8-10
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TABLE III. Dependence of the valuesr s,d
2 , r a,d

6 , Est,d
$22% , andEst,d

$21% on a for model parameters~61!.

a r s,d
2 r a,d

2 r a,d
1 Est,d

$22% Est,d
$21%

1.8668 2.9843 2.2458 3.9332 2.09256 2.09256
2.0 3.0000 2.2500 3.9494 2.10682 2.09899
5.0 3.1429 2.3037 4.0711 2.22882 2.15529

10.0 3.1951 2.3269 4.1094 2.26950 2.17521
25.0 3.2277 2.3420 4.1323 2.29363 2.18750
50.0 3.2388 2.3472 4.1399 2.30161 2.19166
u
e

r
s

m

de

It is
the
tence of a stable stationary state$22% is not an obstacle for
the conformational transition$21%→$12%. The depen-
dence of the bond lengths and energies ona for a system
with parameters~61! is given in Table III.

B. Topological defects of the alternating uniform state

Let us consider now topological solitons that bring abo
the transition between two alternating states with equal
ergies,$21% and$12%. We will call the defect in the chain
$21u12% positiveand in the chain$12u21% negative.
Below we show that these defects possess solitonic featu
i.e., they are actually topological solitons of different sign

Consider a chain of 2N11 particles,un being the coor-
dinate of thenth particle,n50,1, . . . ,2N. For the stationary
state $21% w2k5r a,d

2 , w2k115r a,d
1 , and for the state

$12% w2k5r a,d
1 , w2k115r a,d

2 , n50,1, . . . ,N21. To find
the stationary topological defect the minimization proble
must be solved:

P5 (
k51

N22

@V1,d~w2k!1V1,d~w2k11!1V2~w2k1w2k11!#

1 (
k51

N21

@V2~w2k211w2k!#→minw2k ,w2k11
,

1<k<N22, ~62!

with boundary conditions

w05r a,d
2 , w15r a,d

1 , w2N225r a,d
1 , w2N215r a,d

2 ,
~63!

for positive defect, and

w05r a,d
1 , w15r a,d

2 , w2N225r a,d
2 , w2N215r a,d

1 ,
~64!

for negative defect.
The following defect parameters may be defined: the

fect center position,

P5 (
k50

N22

k~w2n122w2n!/S,

S5 (
k50

N22

~w2n122w2n!5w2N222w0 , ~65!
03661
t
n-

es,
.

-

the defect radius,

R5H (
k50

N22

~p2k!2~w2n122w2n!/SJ 1/2

, ~66!

and diameter,L52R11. All the valuesP, R, and L are
dimensionless as they are expressed in the chain units.
convenient to introduce a new variable, the change in
period of the molecular chainzn5w2n1w2n112(r a,d

1

1r a,d
2 ). Then the soliton amplitude may be defined asA

5zk0
, where k0 is determined by the conditionuzk0

u
5maxkuzku. For a positive defectw2k varies monotonically
from r a,d

2 to r a,d
1 , and for a negative defect vice versa~Fig.

4!.

FIG. 4. Positive~curves 1, 2! and negative~curves 3, 4! station-
ary defects of the chain ata151, a253, b56.5, c53.5, a55,
d50.4. The defect parameters areL155.546, A1520.2282;L2

55.529, A250.1242. The energy of the pair formationDE
52.1026.
8-11
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Let us define also the defect energyE5P2P0, whereP
is given by Eq.~62! andP0 is the energy of the defect-fre
chain,

P05N@V1,d~r a,d
1 !1V1,d~r a,d

2 !#1~2N21!V2~r a,d
1 1r a,d

2 !.

Let us note that only the energy of a pair of defects of d
ferent sign,DE5E11E2 , has a physical sense, since t
defects may only be formed in pairs from an initially hom
geneous state.

A typical appearance of stationary defects is shown in F
4. The defects have the kink-shaped profile characteristic
topological solitons. In the region of soliton localization, l
cal chain compression takes place for positive defects
stretching takes place for negative defects. A topological
fect ~soliton! describes the subsequent transformation of
chain from one AUS to another. In the defect center the ch
is in the nonalternating uniform state. Such a defect may
stable if only the alternating state has lower energy than
nonalternating one. Otherwise the whole chain would tra
fer from two AUS’s to the corresponding SUS. Therefore,
the set of parameters~60! the defects are stable for anya,
and for Eq.~61! only for a>1.8668. The dependence of th
defect pair energyDE, diameterL6 , and amplitudeA6 on
a for these sets of parameters is shown in Figs. 5 and 6

FIG. 5. The dependence of the formation energy of the de
pair, DE ~curve 1!, diametersL6 , and amplitudesA6 ~curves 3, 4!
on a for a151, a253, b54.5, c52, d5 0.4.
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C. Dynamics of topological defects

Suppose that a topological defect moves as a const
profile wave, then@see Eqs.~29! and ~59! for definitions of
the variables involved#

xn5x~nl2vt !, fn5f~nl2vt !,

wherev is the defect velocity, andx(j), f(j) are smooth
functions of the wave variablej5nl2vt. Let us replace the
time derivativesẋn , ḟn by increments,

ẋn5]x/dt52vdx/dj52~v/ l !]x/dn

'2~v/ l !~xn112xn!,

ḟn'2~v/ l !~fn112fn!.

Here we neglected the higher-order finite increments; the
fore, this approximation is restricted to the case of smo
enough solutions. The kinetic energy of the chain may n
be expressed as

ct
FIG. 6. The dependence of the formation energy of the de

pair DE ~curve 1!, diametersL6 , and amplitudesA6 ~curves 3, 4!
on a for a151, a253, b56.5, c53.5, d5 0.4.
8-12
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K5
1

2
mH (

k50

N

u̇2k
2 1 (

n50

N21

u̇2k11
2 J

5
1

2
mH (

k50

N21

@~ ẋk2ḟk!
21~ ẋk1ḟk!

2#1u̇2N
2 J

5
1

2
mH 2 (

k50

N21

~ ẋk
21ḟk

2!1u̇2N
2 J

'
mv2

l 2 (
k50

N21

@~xk112xk!
21~fk112fk!

2#1
1

2
mu̇2N

2 .

Let us note that

xk112xk5
1

2
~u2k131u2k122u2k112u2k!

5
1

2
~w2k1212w2k111w2k!,

fk112fk5
1

2
~u2k132u2k122u2k111u2k!

5
1

2
~w2k122w2k!,

then the chain Lagrangian can be written in the form

L52K1P

52
mv2

4l 2 (
k50

N21

@~w2k1212w2k111w2k!
21~w2k12

2w2k!
2#2

1

2
mu̇2N

2 1 (
k51

N22

@V1,d~w2k!1V1,d~w2k11!

1V2~w2k1w2k11!#1 (
k51

N21

@V2~w2k211w2k!#.

To find the dynamic state of a topological defect movi
with given velocity,s5v/v0, wherev05 lAC2 /m, a minimi-
zation problem is to be solved:

L→minw2k ,w2k11
, 1<k<N22, ~67!

with boundary conditions~63! or ~64!.
The problems~63!,~67!, and ~64!,~67! have been solved

numerically by conjugated gradient method. The depende
of the defect energyE5E6(s)2E6(0) and its geometrica
characteristics on dimensionless velocitys is illustrated by
Fig. 7. The defect has a continuous subsonic velocity sp
trum. The energy and the absolute value of amplitude mo
tonically increase, and the diameter monotonically decrea
in line with the velocity increase.
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V. TRANSITION BETWEEN ALTERNATING AND
INTERMEDIATE HOMOGENEOUS STATES

We have considered above the topological defects pe
nent to the AUS. These defects are topological solitons
transfer the chain from one stationary state to another s
with the same energy level. The existence of such soliton
the consequence of the symmetrical bistability of the cha
i.e., the availability of two equienergetic stationary state
$12% and$21%. The velocity spectrum of a defect is sub
sonic, and the defect’s profile remains constant during m
tion.

In the system under consideration, in addition to statio
ary AUS’s $12% and $21%, stable stationary states ene
getically nonequivalent to them may be revealed. In t
case, we are dealing with an asymmetric multistable syst
It was shown in@6–8# that in asymmetric bistablemolecular
systems topological solitons may exist. Such solitons tran
the system from the ground uniform stationary state to
certain metastable dynamic state. A characteristic featur
such solitons is that they only can move with the uniq
velocity. Let us refer to such topological solitons asmeta-
stable, in contrast to those considered above. In this sec
we demonstrate that in theatomic system in question, in
addition to conventional topological solitons~defects!, meta-
stable solitons may also exist.

FIG. 7. The dependence of the defect energy relative to
energy of the stationary defectE ~curve 1!, diameterL, and ampli-
tudesA6 ~curves 3, 4! on s for a151, a253, b56.5, c53.5, d
5 0.4, a550.
8-13
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A. Dynamic metastable stationary states

In the asymmetrical multistable chain under consid
ation, besides static stationary states, dynamic metas
stationary states may also exist. With the help of molecu
variables introduced in Eq.~29! the system’s Hamiltonian is
expressed in the form

H5(
n

$m~ ẋn
21ḟn

2!1V1,d~2fn!1V1,d~xn112xn2fn11

2fn!1V2~xn112xn2fn111fn!1V2~xn112xn

1fn112fn!%. ~68!

In the AUS we havefn5r a,d
2 /2, xn5nl1r a,d

2 /2 ~we could
also shift the enumeration so thatr a,d

1 would stand instead o
r a,d

2 , and vice versa!. Therefore, for characterization of non
uniform ~defective! alternating states it is convenient to in
troduce the relative displacement of the center of thenth
molecule

r n5xn2~nl1r a,d
2 /2!.

Then the Hamiltonian~68! may be rewritten in the form

H5(
n

$m~ ṙ n
21ḟn

2!1V1,d~2fn!1V1,d~r n112r n1 l 2fn11

2fn!1V2~r n112r n1 l 2fn111fn!1V2~r n112r n

1 l 1fn112fn!%. ~69!

Let us find the metastable~intermediate! dynamic AUS of
the chain. Suppose that a constant-profile wave is runn
with velocity v along the chain, then

r n~ t !5r ~nl2vt !, fn~ t !5f~nl2vt !,

ṙ n~ t !52
v
l

~r n112r n!, ḟn~ t !52
v
l

~fn112fn!.

Thus, the chain Lagrangian has the form

L5(
n

H 2m
v2

l 2
@yn

21~fn112fn!2#1V1,d~2fn!

1V1,d~yn1 l 2fn112fn!1V2~yn1 l 2fn111fn!

1V2~yn1 l 1fn112fn!J , ~70!

whereyn5r n112r n .
Let yn[y, fn[f. Then the Lagrangian~70! is propor-

tional to the following function:

F~y,f,v !52m
v2

l 2
y21V1,d~2f!1V1,d~y1 l 22f!

12V2~y1 l !. ~71!
03661
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At any particular value of velocityv the metastable uniform
state$yv ,fv% corresponds to the minimum of the functio
~71!. This state and corresponding parameters may be fo
numerically by solving the minimization problem

F0~v ![F~yv ,fv ;v !5min
y,f

F~y,f;v !. ~72!

A metastable AUS coincides with the static AUS only forv
50, wheny50 andf5r a,d

2 /2.

B. Metastable topological soliton

Let us consider a topological soliton that describes
transition from the ground state to a metastable state. Su
transition can only occur ifF0 for the metastable state equa
the value ofF for the ground state, i.e., if

F0~v !5F0~0!. ~73!

Thus, the metastable topological soliton may only have
discrete spectrum of velocities. The velocity values may
found numerically as solutions of Eq.~73!.

Suppose that Eq.~73! has a nontrivial solutionv5 v̄.0.
Then, to find the profile of the metastable soliton, it is su
cient to solve the minimization problem

L5 (
n51

N21 H 2m
v̄2

l 2
@yn

21~fn112fn!2#1V1,d~2fn!

1V1,d~yn1 l 2fn112fn!1V2~yn1 l 2fn111fn!

1V2~yn1 l 1fn112fn!J
→miny2 , . . . ,yN21 ;f2 , . . . ,fN21

~74!

with fixed boundary conditions

y150, f15r a,d
2 /2, yN5yv , fN5fN . ~75!

The boundary conditions on the left edge of the chain co
spond to the ground uniform state$yn[0,fn[r a,d

2 /2,v50%
and on the right edge to the metastable state$yn[yv̄ ,fn

[f v̄ ,v5 v̄%.
The solution$yn ,fn%n51

N of the problem~74!,~75! de-
scribes the soliton profile. The above numerical method
calculation of the soliton profile is an application of the pri
ciple of minimal action. It was used earlier in Refs.@18,19#.
A necessary condition for this method is the smooth dep
dence of the soliton profile on the particle numbern. Formal
solutions to the problem~74!,~75! that do not depend
smoothly onn do not make physical sense.

The problem ~74!,~75! was solved by a conventiona
method of conjugated gradients. The initial approximati
profile was chosen in the form

fn5A11B1tanh@~n2N/2!m#,

yn5A21B2tanh@~n2N/2!m#,
8-14
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TOPOLOGICAL SOLITONS IN NONDEGENERATE ONE- . . . PHYSICAL REVIEW E 65 036618
where A15(f11fN)/2, A25(y11yN)/2, B15fN2A1 ,
B25yN2A2. The soliton center’s position and radius are d
fined by analogy with Eqs.~65! and ~66! as

P5 (
n51

N21

n~fn112fn!/~fN2f1!,

R5H (
n51

N21

~p2n!2~fn112fn!/~fN2f1!J 1/2

.

The number of nodesN for the solution of the problem~74!
must be taken approximately ten times larger than the sol
diameterL52R11. Then it is guaranteed that the bounda
conditions will not influence the soliton shape.

Let us consider an example. In the chain with parame
a151, a253, c52, d50.4, C151, a550, b54.899 the
metastable topological soliton has dimensionless velocits

5 v̄/v050.4609 and diameterL518.06. A plot for a pair of
solitons of different signs is shown in Fig. 8. The first a
last quarters of the chain are in the ground uniform st
$yn[0,fn[r a,d

2 /2% (r a,d
2 51.633, r a,d

1 53.262, l 5r a,d
2 1r a,d

1

54.896), and the rest of the chain is in the metastable s
$yn[yv57.70331023, fn[fv51.226,s50.4609%.

Let us remember that the variableyn5(x2n131x2n12
2x2n112x2n)/22 l characterizes the variation of the m
lecular chain period, and the variablefn5(x2n112x2n)/2 is

FIG. 8. Profiles of two metastable topological solitons of diffe
ent signs fort50 ~curves 1, 2! and t521 698~curves 3, 4!. The
velocity of solitonss50.4609; chain parameters area151, a2

53, b54.899,c52, a51, d5 0.4, anda550.
03661
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the half-length of odd bonds. Note that in the metasta
state the lengths of odd and even bonds coincide:x2n11
2x2n52fv5 l 1yv22fv5x2n122x2n11. Thus, the meta-
stable state is topologically equivalent to the uniform st
$22%.

By analogy, in the chain with parametersa151, a253,
c53.5, d50.4, C151, a5100, b56.11 the metastable to
pological soliton has the velocitys50.7748 and diameterL
518.21. A graph for a pair of different sign solitons is show
in Fig. 9. The first and last quarters of the chain are in
ground uniform state$yn[0,fn[r a,d

2 /2% (r a,d
2 52.238,r a,d

1

53.866,l 5r a,d
2 1r a,d

1 56.104), and the rest of the chain is
the metastable state$yn[yv527.61331023,fn[fv

51.524,v5 v̄50.7748%. Here again in the metastable sta
the lengths of odd and even bonds coincide: 2fv5 l 1yv
22fv .

It can be concluded that the metastable topological s
ton, the existence of which is connected with asymmetri
bistability of the molecular system, i.e., the existence of t
stable uniform states$21% and $22% with different ener-
gies, describes the system’s transformation from the gro
uniform state $21% to the dynamic metastable uniform
state, which is topologically equivalent to the uniform sta
$22%.

VI. NUMERICAL MODELING OF SOLITON DYNAMICS

To examine the stability of the solitons revealed in S
IV, we have studied their motion by molecular dynamics.

FIG. 9. Profiles of two metastable topological solitons of diffe
ent signs fort50 ~curves 1, 2! and t512 906 ~curves 3, 4!.The
velocity of solitonss50.7748; chain parameters area151, a2

53, b56.11, c53.5, a51, d5 0.4, anda5100.
8-15
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A. Numerical modeling of the dynamics of topological defects

Let us consider first of all the dynamics of topologic
solitons describing the transition between alternating st
$12% and$21%. Using the system’s Hamiltonian

H5(
n

H 1

2
m~ u̇2n

2 1u̇2n21
2 !1V1~w2n!1V1~w2n11!

1V2~w2n1w2n11!1V2~w2n111w2n!J ,

it is easy to derive the equations of motion,

mü2n5V18~w2n!2V18~w2n21!1V28~w2n1w2n11!

2V28~w2n221w2n21!,

mü2n1152V18~w2n!1V18~w2n11!1V28~w2n111w2n12!

2V28~w2n211w2n!.

Then

mẅ2n5m~ ü2n112ü2n!

522Sn,11Sn,21Sn21,21Sn21,32Sn,31Sn,42Sn21,4,

~76!

FIG. 10. Profiles of two topological defects of different signs
a cyclic chain fort50 ~curves 1, 2! and t520 000 upon passing
9963 chain units~curves 3, 4!. The initial velocity of defectss
50.5; chain parameters area151, a253, b54.5, c52, d50.4,
anda550.
03661
es

mv̈n5m~ ü2n122ü2n!

5Sn11,12Sn,11Sn21,22Sn,21Sn11,322Sn,31Sn21,3,

~77!

where

vn5w2n1w2n11 , Sn,15V18~w2n!, Sn,25V18~w2n11!,

Sn,35V28~w2n1w2n11!, Sn,45V28~w2n111w2n12!.

In order to simulate the dynamics of topological defects
an infinite chain, consider the movement of a pair of defe
of different signs in a cyclic chain ofN5400 particles. Im-
pose periodical conditionsu1[uN11 on Eqs.~76! and ~77!
and take the initial conditions that correspond to the dista
N/2 between the defects~see Figs. 10 and 11!

w2n~0!5w2n
0 , vn~0!5vn

0 , n51, . . . ,N,

w2n8 ~0!52s1~w2(n11)
0 2w2n

0 !, vn8~0!52s1~vn11
0 2vn

0!,

n51, . . . ,N/2, ~78!

w2n8 ~0!52s2~w2(n11)
0 2w2n

0 !, vn8~0!52s2~vn11
0 2vn

0!,

n5N/211, . . . ,N.

FIG. 11. Profiles of two topological defects of different signs
a cyclic chain fort50 ~curves 1, 2! and t520 000 upon passing
9937 chain units~curves 3, 4!.The initial velocity of defectss
50.5; chain parameters area151, a253, b56.5, c53.5, d5 0.4,
anda550.
8-16
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Here $w2n
0 ,vn

0% is the defect profile calculated by solvin
problem~67!; s1 and s2 are dimensionless velocities of th
first and second defects. To simplify the derivations, dim
sionless timet5tv0 / l is introduced; the prime denotes th
derivatived/dt.

Thus, one should solve a system of equations

c3w2n9 522Sn,11Sn,21Sn21,21Sn21,32Sn,31Sn,42Sn21,4,

c3vn95Sn11,12Sn,11Sn21,22Sn,21Sn11,322Sn,3

1Sn21,3, n51,2, . . . ,N ~79!

with initial conditions~78!, wherec35mv0
2/ l 2.

The system~79! was solved by the conventional Rung
Kutta method of fourth order accuracy. It was found that
topological defects exhibit solitonic dynamics, i.e., th
move with constant velocity and profile. For example,
a550, s15s250.5, t520 000 the defects passed 99
chain units~computeds50.498; see Fig. 10! for the set~60!
of chain parameters, and 9937 chain units~computeds
50.497; see Fig. 11! for the set~61!. The profiles of the
defects in the initial and final moments perfectly coincide

FIG. 12. Appearance of a breatherlike nonlinear vibration at
impact of two topological defects of different signs. The bound
condition corresponds to phonon absorption at the chain edges
initial velocity of defectss152s250.5; chain parameters area1

51, a253, b56.5, c53.5, d50.4, anda550.
03661
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Figure 12 demonstrates the effect of the impact of t
different-sign defects running in opposite directions (s1
50.5, s2520.5). The impact leads to recombination of th
defects. As a result, fast relaxing nonlinear oscillations of
breather type occur. The oscillations are accompanied
phonon radiation.

B. Numerical modeling of the dynamics of metastable
topological solitons

Consider now the dynamics of metastable topologi
solitons. The Hamiltonian~69! yields the system of equa
tions of motion

2mf̈n522S1,n1S2,n1S2,n212S3,n1S3,n211S4,n2S4,n21 ,

2mr̈n5S2,n2S2,n211S3,n2S3,n211S4,n2S4,n21 ,

n50,61,62, . . . , ~80!

where

S1,n5V18~2fn!, S2,n5V18~yn1 l 2fn112fn!,

S3,n5V28~yn1 l 2fn112fn!,

S4,n5V28~yn1 l 1fn112fn!.

Using relative displacementsyn5r n112r n , Eq.~80! may be
rewritten as

2mf̈n522S1,n1S2,n1S2,n212S3,n1S3,n211S4,n2S4,n21 ,

2mÿn5S2,n1122S2,n1S2,n211S3,n1122S3,n1S3,n21

1S4,n1122S4,n1S4,n21 ,

n50,61,62, . . . .

Introduce again the dimensionless timet and consider the
dynamics of a kink-antikink pair in a finite chain with per
odic boundary conditions. Then the following system
equations must be integrated numerically:

c4fn9522S1,n1S2,n1S2,n212S3,n1S3,n211S4,n2S4,n21 ,

c4yn95S2,n1122S2,n1S2,n211S3,n1122S3,n1S3,n21

1S4,n1122S4,n1S4,n21 , ~81!

n51,2, . . . ,N,

wherec452mv0
2/ l 2.

Equation~81! was integrated by the conventional Rung
Kutta method of fourth order accuracy. In the chain w
parametersa151, a253, c52, d50.4, a550, b54.899
the soliton had the dimensionless velocitys50.4609. At this
velocity the kink-antikink pair must passNp510 000 chain
units fort5Np /s521698. Figure 8 presents the soliton pr
files att50 andt521 698. In the numerical experiment th

e
y
he
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MANEVITCH, SIGALOV, AND SAVIN PHYSICAL REVIEW E 65 036618
solitons have passedN̄p59990 chain units, which corre

sponds tos̄50.4604. As is seen, the final profiles perfec
coincide with the initial ones.

Now take the parametersa151, a253, c53.5, d50.4,
a5100, b56.11, then s50.7749, t510 000/s512 906.
The soliton profiles are plotted fort50 and t512 906 in

Fig. 9. In reality, the solitons passedN̄p59993 chain units

during this time, moving with constant velocitys̄50.7743.
The picture of impact of two different-sign solitons in

chain with phonon absorption on its edges is presente
Fig. 13. The impact is inelastic and leads to phonon irrad
tion. Recombination of topological solitons takes place, a
then the entire chain transfers to the ground uniform sta

At weak enough smoothening of the piecewise-parab
NN potential~smalld) the topological solitons are no longe
dynamically stable. Thus, ata151, a253, c53.5, d
50.01, a5100, b56.008 we obtains50.3844,L514.08.
Figure 14 shows the kink-antikink pair profiles fort50
~dashed line! and t5251 ~solid line!. The solitons have
passed 40 chain units and stopped. Their movement wa
companied by intense phonon irradiation. Therefore,
smoothness of the particle interaction potential is a neces
condition for the dynamic stability of topological solitons.

FIG. 13. Impact of two metastable topological solitons of d
ferent signs in a chain with parametersa151, a253, b56.11, c
53.5, d50.4, anda5100. The boundary condition corresponds
phonon absorption on the chain edges.
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VII. CONCLUSIONS

It was shown that stable topological solitons may exist
a wide class ofone-component~atomic! chains with both
degenerate and evennondegenerategradient-type potentials
Such solitons may correspond to movement of localiz
structural defects in the chain or to transition of the ent
chain to a metastable dynamic state. The motion of a de
may be considered as an elementary event of structural t
sitions or chemical reactions in one-dimensional atomic cr
tals or conformational transitions in linear macromolecul
In systems with nondegenerate potential, the solitons
transfer the system to a metastable dynamic state can m
with the only possible value of velocity, which is found to b
subsonic. For both types of solitons, their profile rema
constant during motion and phonon radiation is absent
long as the nearest-neighbor interaction potential is smo
enough. The interaction between solitons turns out to be
elastic, and the collision of two solitons of different sign
leads to their recombination.
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FIG. 14. Dynamics of two metastable topological solitons
different signs in a chain with parametersa151, a253, b
56.008,c53.5, d50.01, anda5100. Curves 1, 2 give the soliton
profiles fort50; curves 3, 4 correspond tot5250.
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APPENDIX

~1! Consider an algebraic equation with constant real
efficients,

B4l41B2l21B050. ~A1!

Provided thatB2Þ0 andB4Þ0, its roots are given by

l1,25A2
1

2
q1~16A124q2!, l352l1 , l452l2 ,

~A2!

where

q15B2 /B4 , q25B0B4 /B2
2 . ~A3!

If uq2u!1, then the following asymptotic estimate
valid:

l252
1

2
q1$16@122q222q2

21o~q2
2!#%,

l1'A2q1q2~11q2!, l2'A2q1~12q2!. ~A4!

If uB4u→0 with B2 and B0 fixed, thenul2,4u→` and ul1,3u
→A2q1q25A2B0 /B2.

~2! Consider an ordinary fourth-order differential equati
with constant real coefficients and a nonlinear term,

B4y(IV)1B2y91B0y1A1sgn~y!1A250, ~A5!

with boundary conditions

lim
x→1`

y~x!5y0 , uy0u,`; uy~x!u,`, x→2`.

~A6!

The coefficientsBi are assumed to be such thatB2Þ0, B4
Þ0, q1,0, and 0,q2,1/4, whereq1,2 are defined by Eq.
~A3!. The characteristic equation for the linear part of E
~A5! is Eq.~A1!, its roots being given by Eq.~A2!. It is easy
to see that all the roots of Eq.~A1! are real, and the positive
rootsl1,2 may be chosen so that

0,l1,l2 . ~A7!

The problem is to find such functionsy(x) satisfying Eqs.
~A5! and ~A6! that y(x) is at least three times continuous
differentiable andy(IV)(x) is bounded for anyxP(2`,
1`).

The problem~A5!,~A6! is overdefined, and a necessa
condition for a solution to exist is

y052@sgn~y0!A11A2#/B0 . ~A8!

It is noteworthy that it is sufficient to solve the proble
for y0.0. Indeed, let us find the solutionY for Y052a
,0, provided that the solutiony for y05a.0 is known as a
function of argumentx and parametersAi , Bi , y0. We intro-
duce an auxiliary function,ỹ52y. This function satisfies
Eq. ~A5! with the only change,A2→2A2. The boundary
03661
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conditions for ỹ(x) coincide with Eq.~A6!, and ỹ052y0
5Y0. Therefore,Y may be expressed as a function of arg
mentx, the limit valuey0, and coefficientA2:

Y~x;Y0 ,2A2!52y~x;y0 ,A2!.

In general, for arbitraryy0 , A2,

y~x;y0 ,A2!5sgn~y0!y„x;uy0u,sgn~y0!A2…. ~A9!

~3! Suppose thaty1,0(x) is a solution to Eq.~A5! such that
y1,0(x)50 for x52d1 and y1,0(x).0 for 2d1,x,`, d1
being a constant. The general form ofy1,0(x) is as follows:

y1,0~x!5c0,0
(1)1c1,0

(1)e2l1x1c2,0
(1)e2l2x1c3,0

(1)el1x1c4,0
(1)el2x,

whereci ,0
(1) are some constants. Make a shift of the variablex:

x15x1d1, then the functiony1,0(x) is transformed into
y1,1(x1) that may be written down as

y1,1~x1!5c0,1
(1)1c1,1

(1)e2l1x11c2,1
(1)e2l2x11c3,1

(1)el1x1

1c4,1
(1)el2x1, ~A10!

according to the following rules:

c0,1
(1)5c0,0

(1) , c1,1
(1)5c1,0

(1)el1d1, c2,1
(1)5c2,0

(1)el2d1,

c3,1
(1)5c3,0

(1)e2l1d1, c4,1
(1)5c4,0

(1)e2l2d1.

Now y1,1(0)50.
Let us find such functiony2,1(x1) satisfying Eq.~A5!,

y2,1~x1!5c0,1
(2)1c1,1

(2)e2l1x11c2,1
(2)e2l2x11c3,1

(2)el1x1

1c4,1
(2)el2x1

that it is defined within a certain region2d2<x1<0, d2
.0; y2,1(2d2)5y2,1(0)50, y2,1(x1),0 for 2d2,x1,0,
and the first three derivatives ofy2,1 for x1→20 are equal to
corresponding derivatives ofy1,1 for x1→10. The latter
conditions may be expressed in the following form:

l1~2c1,1
(2)1c3,1

(2)1c1,1
(1)2c3,1

(1)!1l2~2c2,1
(2)1c4,1

(2)1c2,1
(1)2c4,1

(1)!

50, ~A11!

l1
2~c1,1

(2)1c3,1
(2)2c1,1

(1)2c3,1
(1)!1l2

2~c2,1
(2)1c4,1

(2)2c2,1
(1)2c4,1

(1)!50,
~A12!

l1
3~2c1,1

(2)1c3,1
(2)1c1,1

(1)2c3,1
(1)!1l2

3~2c2,1
(2)1c4,1

(2)1c2,1
(1)2c4,1

(1)!

50. ~A13!

Equations~A11! and ~A13! may be considered as a linea
system of equations respective to the sums in parenthe
For l1Þl2 the only solution is

c1,1
(2)2c3,1

(2)5c1,1
(1)2c3,1

(1) , ~A14!

c2,1
(2)2c4,1

(2)5c2,1
(1)2c4,1

(1) . ~A15!
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Now we can substitute Eqs.~A14! and~A15! into Eq. ~A12!
to obtain

c2,1
(2)2c2,1

(1)52
l1

2

l2
2 ~c1,1

(2)2c1,1
(1)!. ~A16!

Sincey1,1(x1)>0 andy2,1(x1)<0 within their range of defi-
nition, it is easy to see from Eq.~A5! that

c0,1
(1)52~A11A2!/B0 , c0,1

(2)5~A12A2!/B0 . ~A17!

Moreover,y1,1(0)5y2,1(0)50, therefore,

(
i 50

4

ci ,1
(1)5(

i 50

4

ci ,1
(2)50. ~A18!

With the help of Eqs.~A14!–~A18! we perform the follow-
ing transformations:

(
i 50

4

ci ,1
(2)5c0,1

(2)1c1,1
(2)1F c2,1

(2)2
l1

2

l2
2 ~c1,1

(2)2c1,1
(1)!G1@c1,1

(2)2c1,1
(1)

1c3,1
(1)#1F c4,1

(2)2
l1

2

l2
2 ~c1,1

(2)2c1,1
(1)!G

5c0,1
(2)12~c1,1

(2)2c1,1
(1)!S 12

l1
2

l2
2D 1(

i 51

4

ci ,1
(1)

52~c1,1
(2)2c1,1

(1)!S 12
l1

2

l2
2D 1~c0,1

(2)2c0,1
(1)!50.

This leads to

c1,1
(2)2c1,1

(1)52L1A1 /B0 , L15~12l1
2/l2

2!21.
~A19!

Substitution of Eq.~A16! into Eq. ~A19! yields

c2,1
(2)2c2,1

(1)52L2A1 /B0 , L25~12l2
2/l1

2!21.
~A20!

Now we shift thex variable once again according tox2
5x11d2, thus we transformy2,1(x1) into y2,2(x2), and then
repeat the steps starting with Eq.~A10!. It is easy to define
the functionsy3,2(x2), y4,3(x3), . . . ,yn11,n(xn) andy3,3(x2),
y4,4(x3), . . . ,yn,n(xn) such that every such function satisfi
Eq. ~A5! and

yk11,k~2dk11!5yk11,k~0!50,

sgn„yk11,k~xk!…5~21!k for 2dk11,xk,0,

yk11,k11~xk11![yk11,k~xk!,

xk5dk1xk215•••5(
j 51

k

dj1x,
03661
wherek.0 anddj.0 for j .1. Let us introduce new vari-
ables

v152L1A1 /B0 , v252L2A1 /B0 , ~A21!

then the relationships for the coefficientsci , j
(k) , k.0, may be

obtained by analogy with Eqs.~A19! and~A20! and with the
aid of Eqs.~A14! and ~A15! in the following form:

c0,j
(k)5@~21!kA12A2#/B0 for any j , ~A22!

c1,k
(k11)2c1,k

(k)5c3,k
(k11)2c3,k

(k)5~21!k11v1 , ~A23!

c2,k
(k11)2c2,k

(k)5c4,k
(k11)2c4,k

(k)5~21!k11v2 , ~A24!

c1,k
(k)5c1,k21

(k) el1dk5c1,k22
(k) el1(dk1dk21)5•••

5c1,0
(k) expS l1(

j 51

k

dj D , ~A25!

c2,k
(k)5c2,k21

(k) el2dk5•••5c2,0
(k) expS l2(

j 51

k

dj D , ~A26!

c3,k
(k)5c3,k21

(k) e2l1dk5•••5c3,0
(k) expS 2l1(

j 51

k

dj D ,

~A27!

c4,k
(k)5c4,k21

(k) e2l2dk5•••5c4,0
(k) expS 2l2(

j 51

k

dj D .

~A28!

Note thatk.0 throughout Eqs.~A22!–~A28!.
Let us expressc1,k

(k11) throughc1,0
(1) with the help of Eqs.

~A23! and ~A25!. We subsequently obtain

c1,k
(k11)5~21!k11v11c1,k

(k)5~21!k11v11el1dkc1,k21
(k) 5•••

5v1$~21!k111el1dk@~21!k1•••1el1d2~1

1el1d1v1
21c1,0

(1)!•••#%. ~A29!

An analogous relationship forc2,k
(k11) is obtained from Eq.

~A29! by replacements (v1→v2 ,l1→l2); for c3,k
(k11) by re-

placement (l1→2l1), and forc4,k
(k11) by replacements (v1

→v2 ,l1→2l2).
Suppose now that the solutionyn11,n(xn) is valid up to

xn→2` ~this corresponds todn11→`). According to
boundary conditions~A6!, yn11,n(xn) must be limited, there-
fore, the coefficientsc1,n

(n11)5c2,n
(n11)50. Using this consid-

eration and Eq.~A29!, we are able to expressc1,0
(1) as follows:

c1,0
(1)5v1e2l1d1

„211e2l1d2$11•••1e2l1dn21@~21!n21

1e2l1dn~21!n#•••%…. ~A30!

The equation forc2,0
(1) is obtained by the aformentioned re

placements. In particular, forn51

c1,0
(1)52v1e2l1d1, c1,0

(1)52v2e2l2d1. ~A31!
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Substitution of Eq.~A30! into ~A29! and use of Eq.~A25!
yield

c1,k
(k)5v1„~21!k1e2l1dk11$~21!k111•••1e2l1dn21

3@~21!n211e2l1dn~21!n#•••%…. ~A32!

By analogy,

c2,k
(k)5v2„~21!k1e2l2dk11$~21!k111•••1e2l1dn21

3@~21!n211e2l2dn~21!n#•••%…. ~A33!

Boundary conditions~A6! with account of Eq.~A7! re-
quire thatc3,0

(1)5c4,0
(1)50; therefore, we can obtain similar ex

pressions forc3,k
(k) , c4,k

(k) by analogy with Eq.~A29!:

c3,k
(k)5v1e2l1dk$~21!k1e2l1dk21@~21!k211•••

1e2l1d3~211e2l1d2!•••#%, ~A34!

c4,k
(k)5v2e2l2dk$~21!k1e2l2dk21@~21!k211•••

1e2l2d3~211e2l2d2!•••#%. ~A35!

Note that Eqs.~A32!, ~A33!, ~A34!, and ~A35! do not
included1. This is a consequence of the translational inva
ance of Eq.~A5!. In fact,d1 is an arbitrary variable that ma
be chosen to be zero or some other value dictated by con
erations of convenience.

~4! Consider some particular types of solutions to t
problem~A5!,~A6!.

~i! Let us find solutions withn51, i.e., such that the
function y changes its sign only once. We have from E
~A10!, ~A25!, ~A26! and ~A31!:

y1,1~0!5c0,1
(1)1c1,1

(1)1c2,1
(1)52~A11A2!/B02v12v250.

Substitutingv i from Eq. ~A21! and noting an identity

L11L251, ~A36!

we find that the following identity must hold:

A250. ~A37!

Therefore, a such solution may exist if only Eqs.~A8! and
~A37! are true. Then it follows from Eq.~A8! that y05
2A1 /B0. If this is the case then the solution fory0.0 has
the form

y1,1~x1!5y0@L1~12e2l1x1!1L2~12e2l2x1!#, x1>0,

y2,1~x1!52y0@L1~12el1x1!1L2~12el2x1!#, x1,0,

or, in a more general form, an antisymmetric solution is
nally obtained:

y~x!5y0 sgn~x!@L1~12e2l1uxu!1L2~12e2l2uxu!#.
~A38!

~ii ! Let function y(x) have n52 zeros. We express th
coefficientsci ,1

(1) with help of Eqs.~A32! and ~A33! to write
down for y0.0,
03661
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y1,1~0!52~A11A2!/B01v1~211e2l1d2!

1v2~211e2l2d2!50.

Therefore, for arbitraryy0 we obtain, using Eq.~A9!,

r[2sgn~y0!
A2

A1
5L1e2l1d21L2e2l2d2. ~A39!

Note that, by definition,d2.0. Then, taking into accoun
Eqs.~A7! and~A36!, we can see that a solution of the give
type exists if only

0,r ,1. ~A40!

If Eq. ~A40! holds anduA2u!uA1u and/orl1!l2, then d2
'(l1)21lnuL1A1 /A2u.

If y0.0, the solutionsy1,1(x1), y2,2(x2), y3,2(x2) may be
obtained in the form~A10! and unified to be presented in
symmetrical form,

y~z!5
A12A2

B0
2

2A1

B0
@L1e2l1dcosh~l1z!

1L2e2l2dcosh~l2z!#, uzu<d, ~A41!

y~z!52
A11A2

B0
1

2A1

B0
@L1sinh~l1d!e2l1uzu

1L2sinh~l2d!e2l2uzu#, uzu>d, ~A42!

whered5d2/2 andz5x11d5x22d. With the help of iden-
tity ~A36! and Eq.~A39! it can be easily shown that bot
Eqs.~A41! and ~A42! yield y(6d)50.

Upon simple transformations Eqs.~A41! and ~A42! may
be generalized to cover the casey0,0 as well:

y~z!52y0H 12
2

12r
@2r 1L1e2l1dcosh~l1z!

1L2e2l2dcosh~l2z!#J , uzu<d,

y~z!5y0H 12
2

12r
@L1sinh~l1d!e2l1uzu

1L2sinh~l2d!e2l2uzu#J , uzu>d.

This solution is symmetric. Note that the expressions in cu
brackets, as shown above, are always positive.

~iii ! Let functiony(x) haven.2 zeros. We substitute th
values ofci ,1

(1) into expressiony1,1(0)50 and take into ac-
count Eqs.~A17! and ~A21! to obtain

r 5L1e2l1d2
„11e2l1d3$211e2l1d4@11•••

1~21!ne2l1dn#•••%…1L2e2l2d2
„11e2l2d3$21

1e2l2d4@11•••1~21!ne2l2dn#•••%…. ~A43!
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On the other hand, the same way we find from condit
y2,2(0)50 that

r 5L1„e
2l1d21e2l1d3$211e2l1d4@11•••

1~21!ne2l1dn# . . . %…1L2„e
2l2d21e2l2d3$21

1e2l2d4@11•••1~21!ne2l2dn#•••%…. ~A44!

Let us introduce the functions

Fi~ t !52e2l i t$211e2l i d4@11•••

1~21!2ne2l i dn#•••%, i 51,2,

and
sl

D

,

03661
n F~ t !5L1F1~ t !1L2F2~ t !. ~A45!

Then the result of comparison of Eqs.~A43! and~A44! after
simple transformations may be written down as follows:

F~d21d3!5F~d3!. ~A46!

The functionF(t) monotonically decreases fromF(0),1 to
zero fort→1`. It is easy to see therefore that Eq.~A46! can
only hold if d250 and/ord3→`. Both of these possibilities
contradict our assumption 0,dk,` for 1,k<n, n.2.

Thus, the problem~A5!,~A6! has a unique solution for the
number of zerosn51 or n52 and does not have solution
for n.2.
D
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